Corrector Estimates for Elliptic Systems with Random Periodic Coefficients

نویسندگان

  • Peter Bella
  • Felix Otto
چکیده

We consider an elliptic system of equations on the torus [ −L2 , L 2 )d with random coefficients A, that are assumed to be coercive and stationary. Using two different approaches we obtain moment bounds on the gradient of the corrector, independent of the domain size L. In the first approach we use Green function representation. For that we require A to be locally Hölder continuous and distribution of A to satisfy Logarithmic Sobolev inequality. The second method works for non-smooth (possibly discontinuous) coefficients, and it requires that statistics of A satisfies Spectral Gap estimate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal Error Estimate in Stochastic Homogenization of Discrete Elliptic Equations1 by Antoine Gloria and Felix Otto

This paper is the companion article to [Ann. Probab. 39 (2011) 779–856]. We consider a discrete elliptic equation on the d-dimensional lattice Zd with random coefficients A of the simplest type: They are identically distributed and independent from edge to edge. On scales large w.r.t. the lattice spacing (i.e., unity), the solution operator is known to behave like the solution operator of a (co...

متن کامل

Quantification of ergodicity in stochastic homogenization: Optimal bounds via spectral gap on Glauber dynamics

We study quantitatively the effective large-scale behavior of discrete elliptic equations on the lattice Z with random coefficients. The theory of stochastic homogenization relates the random, stationary, and ergodic field of coefficients with a deterministic matrix of effective coefficients. This is done via the corrector problem, which can be viewed as a highly degenerate elliptic equation on...

متن کامل

Random homogenization and convergence to integrals with respect to the Rosenblatt process

This paper concerns the random fluctuation theory of a one dimensional elliptic equation with highly oscillatory random coefficient. Theoretical studies show that the rescaled random corrector converges in distribution to a stochastic integral with respect to Brownian motion when the random coefficient has short-range correlation. When the random coefficient has long range correlation, it was s...

متن کامل

Homogenization in polygonal domains

We consider the homogenization of elliptic systems with ε-periodic coefficients. Classical two-scale approximation yields a O(ε) error inside the domain. We discuss here the existence of higher order corrections, in the case of general polygonal domains. The corrector depends in a non-trivial way on the boundary. Our analysis extends substantially previous results obtained for polygonal domains...

متن کامل

Corrector theory for elliptic equations in random media with singular Green’s function. Application to random boundaries

We consider the problem of the random fluctuations in the solutions to elliptic PDEs with highly oscillatory random coefficients. In our setting, as the correlation length of the fluctuations tends to zero, the heterogeneous solution converges to a deterministic solution obtained by averaging. When the Green’s function to the unperturbed operator is sufficiently singular (i.e., not square integ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016